FSHD Study Utilizes Stem Cells

A new potential treatment for FSHD utilizes stem cells to regenerate the muscle lost to protein DUX4.

In a recently published study by the University of Minnesota, researchers are utilizing skeletal muscle stem cells in an animal model designed to study the muscle-degenerative protein DUX4 found in patients with facioscapulohumeral muscular dystrophy [FSHD]. The team was able to harvest the muscle stem cells from one mouse with FSHD and transplant them into a recipient mouse, allowing the recipient to regenerate new muscle as long as DUX4 was not activated. Continue reading

Anti-Aging Properties of MSCs

Mesenchymal Stem Cells are able to stimulate muscle-building cells that lose function with age.

A recently published study by University of Illinois Kinesiology and Community Health Professor Marni Boppart has identified mesenchymal stem cells [MSCs] as a tool for rejuvenating muscle to prevent age-related injuries and disabilities.  In addition to their ability to differentiate into other cell types, MSCs were found to secrete growth factors that stimulate the activation of the multiple cell types comprising skeletal muscle, including muscle precursor cells and satellite cells, which lose function with age. Continue reading

Muscle Degeneration Reversed Through Discovery of Stem Cell Pathways

A new discovery in stem cell differentiation could lead to new treatments for muscle-wasting diseases.

Recent research from the University of Colorado Boulder has identified two stem cell signaling pathways that are directly related to the age-related degeneration of muscle tissue and the onset of a variety of muscle-wasting diseases, such as muscular dystrophy and sarcopenia.  By altering these pathways, the investigators were able to enhance muscle stem cell renewal and improve muscle regeneration. Continue reading

Stem Cells Utilized to Develop Treatments for Duchenne Muscular Dystrophy

MD

Duchenne Muscular Dystrophy, a particularly severe form of muscular dystrophy [MD – a genetic disorder], affects as many as 15,000 young Americans.  Many of those afflicted eventually succumb to cardiac or respiratory failure by their early 20’s.  Researchers at University of California, Los Angeles, are utilizing stem cells to model the disease in order to develop and test treatments. One particularly promising treatment involves a method referred to as exon skipping.  The technique essentially tricks the cell’s machinery into misreading the MD genetic mutation so instead of producing the defective protein responsible for the disease, the cells produce a more functional version of the protein.  In using muscle cells derived from stem cells of people with muscular dystrophy – the cells contain the mutation that causes muscular dystrophy – researchers anticipate their tests to more accurately reflect how human cells would react to their drugs [or combination of drugs]. This enables more efficient and effective testing of potential treatments and speeds the process of developing those treatment options that show the most promise.  According to Stanley Nelson, a lead researcher on the project, “We are thrilled that stem cell research will change the outcome of Duchenne”.

Continue reading

Researchers Pursue Stem Cell Treatment for Muscular Dystrophy

 

 

 

 

 

 

 

Researchers at San Raffaele Scientific Institute of Milanand University College London recently used a technique to implant genetically modified muscle cells into mice with muscular dystrophy. These mice were then able to perform more movement related actions, such as running longer on a treadmill, than mice who did not receive the treatment. “This technique may be useful in the future for treating limb-girdle muscular dystrophy and perhaps other forms of muscular dystrophy,” says leader of the study, Dr. Francesco Saverio Tedesco.

Continue reading