Atherosclerotic Lesions Prevented by MSCs

Stem cells were found to reduce plaque in patients with atherosclerosis.

According to new research from the National Yang-Ming University, mesenchymal stem cells [MSCs] hold the ability to limit atherosclerotic plaque formation, thereby preventing the onset of harmful endothelial lesions. The research team, led by Shih-Chieh Hung, transplanted MSCs into animal models with atherosclerosis and observed significant reduction in plaque formation. They also saw an increase in blood vessel dilation, which prevents further plaque development, indicating good endothelial health. Continue reading

Gel-Like Polymers May Improve Stem Cell-Based Therapies.

Scientists are developing a polymeric gel to protect stem cells from trauma during transplant injections.

Complex chemical polymers are currently being developed by scientists at Stanford University to protect and support the proliferation of stem cells during spinal cord transplantation procedures.  The gels are designed to provide padding for the cells during injection, while also varying in viscosity and the biochemical signals contained within to offer stem cells an optimal environment for differentiation. Continue reading

Type 1 Diabetes Treatment Advance Utilizes Mesenchymal Stem Cells

The transplantation of adult stem cells into a Type-1 Diabetes animal model has revealed the importance of blood vessels in pancreatic beta cell regeneration.

Researchers led by Dr. Habib Zaghouani from the University of Missouri have developed a potential cure to Type 1 Diabetes by utilizing mesenchymal stem cells [MSCs].  Although researchers anticipated that the MSCs would differentiate into new insulin producing pancreatic beta cells, they discovered that the stem cells fulfilled the more critical function of repairing damaged blood vessels, which in turn facilitated the regeneration of insulin producing pancreatic beta cells and the distribution of insulin across the body. Continue reading

Barth Syndrome Studied Utilizing “Organ-On-A-Chip” Technology and Autologous Stem Cells.

Scientists have generated heart tissue on a chip to better study Barth Syndrome.

A team of scientists from the Wyss Institute, Boston Children’s Hospital, and Harvard’s Medical School, Stem Cell Institute, and School of Engineering has created a model to study and develop treatments for the genetic heart disorder Barth Syndrome by utilizing a patient’s own stem cells in conjunction with an organ-on-a-chip.  The chip was outfitted with proteins to mimic the cellular environment of the heart, causing the patient’s stem cells to differentiate into diseased heart tissue.  The tissue was then studied to not only determine the cause of the disease, but to treat the diseased tissue as well. Continue reading

Ninth International Conference on Cell Therapy for Cardiovascular Disease

The CRF will discussed how stem cells are being used to treat cardiovascular disease

The Cardiovascular Research Foundation will be hosting the Ninth International Conference on Cell Therapy for Cardiovascular Disease from January 22nd to 24th, 2014.  The conference will cover major preclinical and clinical studies, as well as the promising stem cell-based products and therapies being developed to treat cardiovascular disease. Continue reading

Stem Cells Utilized to Generate “Mini-Kidney”

Three-Dimensional kidneys will allow doctors to better study kidney diseases.

Researchers at the Salk Institute for Biological Studies have developed a method for generating a small, three-dimensional kidney structure thus enabling researchers to better understand various kidney diseases and to enhance the development of more personalized, effective treatment options. Kidney disease is a significant health issue with Chronic Kidney Diseases affecting one in every 10 American adults. Continue reading

Stem Cells Utilized to Develop Treatments for Duchenne Muscular Dystrophy

MD

Duchenne Muscular Dystrophy, a particularly severe form of muscular dystrophy [MD – a genetic disorder], affects as many as 15,000 young Americans.  Many of those afflicted eventually succumb to cardiac or respiratory failure by their early 20’s.  Researchers at University of California, Los Angeles, are utilizing stem cells to model the disease in order to develop and test treatments. One particularly promising treatment involves a method referred to as exon skipping.  The technique essentially tricks the cell’s machinery into misreading the MD genetic mutation so instead of producing the defective protein responsible for the disease, the cells produce a more functional version of the protein.  In using muscle cells derived from stem cells of people with muscular dystrophy – the cells contain the mutation that causes muscular dystrophy – researchers anticipate their tests to more accurately reflect how human cells would react to their drugs [or combination of drugs]. This enables more efficient and effective testing of potential treatments and speeds the process of developing those treatment options that show the most promise.  According to Stanley Nelson, a lead researcher on the project, “We are thrilled that stem cell research will change the outcome of Duchenne”.

Continue reading

Stem Cells Differentiated Into Brain Neural Cells

A cross-section of a brain-like clump of neural cells derived from stem cells
A cross-section of a brain-like clump of neural cells derived from stem cells

Researchers at the Austrian Academy of Science, Institute of Molecular Biotechnology in Vienna have developed brain-like chunks of tissue utilizing human stem cells. This advance in stem cell differentiation will give researchers a better understanding of brain development, which will accelerate stem cell treatments for brain related disorders.

The research is an example of how scientists are gaining insights that will facilitate more effective regenerative treatments leading to better outcomes.  To learn more about the value of preserving your own stem cells for use in future regenerative therapies and how to bank your own stem cells through a non-evasive and affordable method by recovering your dental pulp stem cells, visit StemSave or call 877-783-6728 (877-StemSave) today.

To view the full article, click here.

The Future of Regenerative Medicine is Now™.

Advances in Stem Cell Therapy for Down Syndrome

little girl with down syndrome missing teeth

Researchers at UMass Medical School use human stem cells to ‘shut down’ the chromosomes causing Down syndrome. The lead researcher, Jeanne B. Lawrence, a professor of cell and developmental biology at UMass Medical School, explained, “Our hope is that for individuals living with Down syndrome, this proof-of-principal opens up multiple exciting new avenues for studying the disorder now, and brings into the realm of consideration research on the concept of ‘chromosome therapy’ in the future”. The treatment seeks to address the root cause of the disease as opposed to merely mitigating the symptoms of the disease.

Continue reading

Stem Cell Diabetes Treatment Option Advances

doctor measuring patient's insulin level

In an early stage study recently carried out by the Institute of Kidney Diseases and Research Center (IKDRC), a treatment developed by the IKDRC utilizing Insulin Secreting Cells (ISC), derived from the patient’s own mesenchymal stem cells, shows that the need for insulin doses decreased by an average of 50% when the ISCs were implanted in patients.

Continue reading