An Eye for a Tooth: Corneal Blindness Treatment Advances With The Use Of Dental Stem Cells.

Dental Stem Cells may hold the potential to cure corneal blindness.

Ophthalmologists James L Funderburgh, Ph.D. and Fatima Syed-Picard, Ph.D. from the University of Pittsburgh have devised a method for treating corneal blindness by utilizing dental pulp stem cells.  The researchers harvested the stem cells from molars discarded during routine extraction and induced the cells to differentiate into keratocytes [corneal cells].  They then seeded the cells onto a nanofiber scaffold, allowing them to grow into fully developed, functional corneas capable of restoring eyesight.    Continue reading

CRISPR Advances Genetic Disease Treatment with Stem Cells.

CRISPR may change the way scientists incorporate stem cells for translational genomics.

Scientists led by Dr. Craig Mello of The University of Massachusetts have developed a genetic tool – CRISPR [clustered regularly interspaced short palindromic repeats] – to revolutionize the way stem cells are applied to treat genetic diseases, such as sickle cell or thalassemia.  CRISPR aims to expedite and improve upon the process of translational genomics, in which the patient’s stem cells are extracted, altered to repair the damaged gene, and then transplanted back to the patient. Continue reading

Lupus Therapy Incorporates Mesenchymal Stem Cells

Beijing researchers are capitalizing on the abilities of mesenchymal stem cells to reduce inflammation and promote cell growth to combat systemic lupus erythematosus.

In a recent clinical study conducted in Beijing, researchers are testing a treatment for patients suffering from systemic lupus erythematosus by administering autologous [the patient’s own] mesenchymal stem cells.  The researchers aim to capitalize on the unique abilities of MSCs to not only differentiate into a multitude of different cell types, but to reduce the autoimmune attack in patients affected by lupus as well. Continue reading

Stem Cell Awareness Day 2014

The California Institute of Regenerative Medicine has coordinated Stem Cell Awareness day to highlight all of the progress that stem cells already made for patients around the world.

Today, stem cells are rightfully perceived as the future of regenerative medicine, set to bring the marvels of science fiction into reality.  But in looking ahead at all of the promise that stem cells hold for the future, it becomes easy to miss the scientific advances made to date for the millions of people around the world suffering from disease, trauma, and injury.  Thus, today marks Stem Cell Awareness Day: a global celebration of stem cell research coordinated to highlight the treatments and therapies currently in development to create personalized regenerative therapies for patients. Continue reading

Harnessing the Power of Stem Cells

Scientists have developed a method for increasing the survival rate, and therefore the effectiveness, of transplanted mesenchymal stem cells.

A team of scientists from the Harvard Stem Cell Institute and the Boston Children’s Hospital have developed a method to increase the survival rate, and therefore the effectiveness, of transplanted mesenchymal stem cells [MSCs]. In an animal model, Dr. Juan Melero-Martin and his team of researchers co-transplanted MSCs with blood vessel-forming cells, enabling the stem cells to survive longer in a patient to reach their full regenerative potential.

Continue reading

Growing Teeth with Mesenchymal Stem Cells

Scientists are using mesenchymal stem cells to grow new organs in vivo.

Researchers at the Wyss Institute and Harvard School of Engineering and Applied Sciences have developed a self-shrinking gel that, when loaded with mesenchymal stem cells [MSCs], stimulates their ability to differentiate into teeth, bones, and organs in vivo [in the patient’s body]. The gel is designed to spontaneously compress at 37°C [the temperature of the human body], which places the physical pressure required to trigger the stem cells’ proliferative properties while inside the patient’s body. Continue reading

Dental Stem Cells Differentiated into Brain-like Cells for Stroke Patients

Scientists have discovered the ability of dental pulp stem cells to grow into brain-like neurons.

Researchers from the University of Adelaide, led by Dr. Kylie Ellis, have discovered that dental pulp stem cells [DPSC] have the ability to differentiate into complex networks of cells closely resembling neurons found in the brain.  According to Dr. Ellis, “Stem cells from teeth have great potential to grow into new brain or nerve cells, and this could potentially assist with treatments of brain disorders, such as stroke.” She goes on to say “ultimately, we want to be able to use a patient’s own stem cells for tailor-made brain therapy that doesn’t have the host rejection issues commonly associated with cell-based therapies. Another advantage is that dental pulp stem cell therapy may provide a treatment option available months or even years after the stroke has occurred.”  Current drug treatment therapies for stroke victims must be administered almost immediately following the stroke – within hours.  This severely limits their application as most stroke victims don’t have access to these treatments within that timeframe. Continue reading

Mind the Gap: “BioPen” Offers Personalized Bone Reconstruction

The Biopen “fills in” damaged bone with stem cells to facilitate bone regeneration.

Researchers at Melbourne’s St. Vincent Hospital and the University of Wollongong are engineering a device known as the “Biopen” to deliver stem cells to damaged or diseased bones. This novel method of stem cell therapy administers a mixture of jelly and stem cells into the damaged sections of the bone. The jelly is then UV-dried into a scaffolding to facilitate stem cell growth and bone regeneration.

Continue reading

Stem Cell Diabetes Treatment Option Advances

doctor measuring patient's insulin level

In an early stage study recently carried out by the Institute of Kidney Diseases and Research Center (IKDRC), a treatment developed by the IKDRC utilizing Insulin Secreting Cells (ISC), derived from the patient’s own mesenchymal stem cells, shows that the need for insulin doses decreased by an average of 50% when the ISCs were implanted in patients.

Continue reading

Advances in Stem Cell Therapy for Huntington’s Disease

Huntington's protein

Scientists at the University of California Davis’ Institute for Regenerative Cures are utilizing mesenchymal stem cells [the same type of stem cells found in teeth] to develop a new therapy that targets the genetic abnormality in Huntington’s disease. The principal investigator of the study, and the director of UC Davis stem cell program and the UC Davis Institute for Regenerative Cures, Jan Nolta said, “Our team has made a breakthrough that gives families affected by this disease hope that genetic therapy may one day become a reality.” The treatment seeks to address the root cause of the disease as opposed to merely mitigating the symptoms of the disease.

Continue reading